CompTIA DataX DY0-001 (V1) Practice Question

A machine learning engineer is manually implementing the gradient descent algorithm to optimize a multivariate linear regression model. The objective is to minimize the Mean Squared Error (MSE) cost function by iteratively adjusting the model's parameters (weights). For each iteration of the algorithm, which of the following mathematical operations is most fundamental for determining the direction and magnitude of the update for a specific weight?

  • Calculating the Euclidean distance between the predicted and actual values.

  • Computing the second partial derivative (Hessian matrix) of the cost function.

  • Applying the chain rule to the model's activation function.

  • Calculating the partial derivative of the MSE cost function with respect to that specific weight.

CompTIA DataX DY0-001 (V1)
Mathematics and Statistics
Your Score:
Settings & Objectives
Random Mixed
Questions are selected randomly from all chosen topics, with a preference for those you haven’t seen before. You may see several questions from the same objective or domain in a row.
Rotate by Objective
Questions cycle through each objective or domain in turn, helping you avoid long streaks of questions from the same area. You may see some repeat questions, but the distribution will be more balanced across topics.

Check or uncheck an objective to set which questions you will receive.

SAVE $64
$529.00 $465.00
Bash, the Crucial Exams Chat Bot
AI Bot